353 research outputs found

    Are species occurrence data in global online repositories fit for modeling species distributions? The case of the Global Biodiversity Information Facility (GBIF). Final Report of the Task Group on GBIF Data Fitness for Use in Distribution Modelling.

    Get PDF
    Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or records of the occurrences of species. PBD is a fundamental concept of biodiversity informatics since it is substantial in quantity and provides the links to organize other large and independent bodies of data concerning species (= taxonomic information) and environments. In fact, PBD is at the core of the exploding field of biodiversity informatics, which in some sense now underlies biogeography, macroecology, landscape ecology and several other subdisciplines of biology. A principal - and rapidly growing - class of research that can be performed using PBD is the estimation of a species' environmental requirements and the projection of these in both environmental and geographic spaces to estimate niches or distributional ranges, generally by using models of ecological niches and species' distributions (often called ENMs or SDMs, respectively). The largest point of access to PBD in the world is the Global Biodiversity Information Facility (GBIF), and hundreds of papers have now used GBIF-mediated data to fit and apply ENM/SDM. Experience has shown that GBIF, like other aggregated data research infrastructures, holds a number of potential problems related to incomplete or difficult access to all the fields in its schema, inconsistent information among fields, or simply erroneous or incomplete data. These drawbacks complicate ENM/SDM analyses considerably, and detract from the enormous scientific value of this information storehouse. Three overlapping communities participate in GBIF's data process: providers (museums, herbaria, and observer's networks), users (scientists, analysts working for governments, NGOs or the private sector, the public) and the technical staff managing the huge databases, web services and servers at GBIF. Each can play a different role in fixing data issues of GBIF. Our main recommendations for the GBIF Secretariat are the following: GBIF.org should serve indicators of precision, quality, and uncertainty of data that can be calculated practically, and preferably "on the fly", as well as summaries and metrics of completeness of inventories, at scales and for regions defined by the user. The summaries should display maps and graphs of completeness by region, time-period and taxa. The implementation of the GBIF information resource should go beyond unique identifiers of queries (DOIs for downloads, including the capability to re-run queries, http://www.gbif.org/publishing-data/summary#supporteddatasettypes), and to include identifiers of the individual data that make up the queried data. GBIF.org should include applications or functionalities enabling users to annotate errors or problems, and communicate those changes directly to providers, as it may be practical and appropriate. This point may need to be discussed with providers. A procedure enabling users to make accessible versions of their databases that have been improved and annotated should be supported, but this functionality should not lose the vital tie back to the original data records and the actual data provider. GBIF should partner with and/or support initiatives to do more for training and guiding users on the proper use of the data; such initiatives should incorporate actual expert uses in ENM/SDM to assure that current best practices are followed

    Convexity in partial cubes: the hull number

    Full text link
    We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves some earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and characterize these graphs in terms of their lattice of convex subgraphs, improving a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Graft-versus-host disease and relapse/rejection-free survival after allogeneic transplantation for idiopathic severe aplastic anemia: a comprehensive analysis from the SAAWP of the EBMT.

    Get PDF
    Survival after Allo-HSCT for severe idiopathic aplastic anemia (SAA) has improved in recent years, approaching 75% at 5 years. However, an SAA-adapted composite endpoint, GVHD and relapse/rejection-free survival (GRFS), may more accurately assess patient outcomes beyond survival. We analyzed GRFS to identify risk factors and specific causes of GRFS failure. Our retrospective analysis from the SAAWP of the EBMT included 479 patients with idiopathic SAA who underwent Allo-HSCT in 2 conventional situations: i) upfront Allo-HSCT from a matched related donor (MRD) (upfront cohort), and ii) Allo-HSCT for relapsed or refractory SAA (rel/ref cohort). Relevant events for GRFS calculation included graft failure, grade 3-4 acute GVHD, extensive chronic GVHD, and death. In the upfront cohort (n=209), 5-year GRFS was 77%. Late Allo-HSCT (i.e., >6 months after SAA diagnosis) was the main poor prognostic factor, specifically increasing the risk of death as the cause of GRFS failure (HR: 4.08, 95% CI [1.41-11.83], p=0.010). In the rel/ref cohort (n=270), 5-year GRFS was 61%. Age was the main factor significantly increasing the risk of death (HR: 1.04, 95% CI [1.02-1.06], p<0.001), acute GVHD (HR: 1.03, 95% CI [1.00-1.07], p=0.041), and chronic GVHD (HR: 1.04 95% CI [1.01-1.08], p=0.032) as the cause of GRFS failure. GRFS after upfront MRD Allo-HSCT was very good, notably with early Allo-HSCT, confirming that younger patients with a MRD should be transplanted immediately. GRFS was worse in cases of salvage Allo-HSCT, most notably in older patients, questioning the utility of Allo-HSCT earlier in the disease course

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore